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Abstract

The thermal response of an infinite flat plate is considered, when the heat transfer coefficients on both the exposed surfaces undergo ste
changes. The configuration is a simplified model for the heat transfer through the separating wall in the Isochoric Counter-Current Heat
Exchanger. The step change in the second surface appears with a time delay with respect to the first. The plate temperature, surface he
fluxes and accumulated energy perturbations are evaluated for both the thermally thick and thin cases and the corresponding results ar
compared. The results show a significant influence of both the delay time and the Biot numbers perturbations. It is shown that for a specific
combination of Biot number magnitudes the plate is brought suddenly into a steady state condition and as soon as the second step appear
In addition, an inner point may be defined where the final steady state temperature perturbation becomes zero, separating the plate into tw
oppositely thermally stressed regions.

0 2005 Elsevier SAS. All rights reserved.
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1. Introduction ities to the cold ones through the plate. In each cavity a
temperature change is associated with a corresponding pres-

The Isochoric, Counter-Current Heat Exchanger (ICHE) Sure one, in agreement with the state law of the (nearly)
has been proposed by Georgiou [1,2] as a mechanism Capaperfect gasses. The length of the cascade depends on the
ble of implementing the thermodynamic process of regener- temperature difference, the overall thermal resistance and
ative preheating in the Lenoir cycle. As shown by Georgiou the exposed area of the lid plate. Its length grows with the
and Gkiouvetsis [3], the introduction of the mechanism may thermal resistance of the lid. In order to minimize resistance,
lead to a modified Otto cycle with a real efficiency compa- the lid plate has to be thin and highly conductive. This, how-
rable to that of the combined cycles employed in modern ever, is limited by structural considerations. The very small
power plants. thickness of this plate means that the heat flux through it es-

The proposed heat exchanger consists of two parallel lid sentially will be one-dimensional, although a small degree of
driven cavity cascades moving in opposite directions on the a “travelling source” effects will be present. The complete
two sides of the separating plate, which acts as their com-heat conduction process through this plate is highly tran-
mon lid. The cavities of the first cascade are filled with the sjent and complex. A number of mechanisms are involved.
hot gas, while the cavities in the opposite cascade are filledThe gas temperatures exhibit step changes as the cavity ribs
with the cold one. Heat is transferred from the hot gas cav- pass over a given point and ramp ones due to the continu-

ous heating/cooling of the gas inside each cavity. The cavity
mpon ding author, Tel, & fax: +30 2610 997 243, wall _heat transfer coefﬁmepts are nearly constant away from

E-mail addresses: siakavel@mech.upatras.gr (N.J. Siakavellas), the ribs, but they change significantly near them. Hence, the
dpgeorg@mech.upatras.gr (D.P. Georgiou). optimisation of the design process requires a good under-
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Nomenclature

A heat transfersurface ..................... m y magnitude of the step change in the convective
B Biot number heat transfer coefficient
c specificheat.................... kLKL & dimensionless accumulated energy
E accumulatedenergy ..., J e very small positive value involved in the
h heat transfer coefficient ... ...... W-2K-1 definition of the recovery time
hiot overall heat transfer coefficient. .. Ya—2.K~1 0 dimensionless temperature . _
h, internal conductance of the plate per unit A€ eigenvalues involved in the analytical solution

IENGHN ..o e oo Wi—2.K-1 i mass density. ............oevvenan... NOB
k thermal conductivity . ........... wh-1.K-1 T dimensionless time _
q heat fluxX. . . ... oo Wi—2 T4 dimensionless delay period between the step
0 instantaneous energy accumulation rate per unit change in the convective heat transfer

ATBA. ..ottt 2 coefficients
R dimensionless recovery time T] dimensionless delay period satisfying a specific
T temperature. ... K cpndlthn :
T temperature of fluid 1 K @ dimensionless heat flux perturbation

ool Lo o dimensionless instantaneous energy

Too2 temperature of fluid2..................... K .
t time .o s accumulation rate
tq delay period ........cooviiiiiii . s Subscripts
w plate thickness ........................... m 1 side of the plate in contact with the fluid 1,
y transverse distance .............. .. ... m aty=0 (Y =0)
Y dimensionlesy coordinate 2 side of the plate in contact with the fluid 2,
Yo coordinate of a point with final temperature aty=w (Y =1)

perturbation equal to zero 0 initial

01 initial, aty =0 (Y = 0)
Greek symbols S
¥ 02 initial, aty =w (Y = 1)

o thermal diffusivity . .................. st f,F final
B ratio of the overall heat transfer coefficient to the in entering the plate

internal conductance per unit length of the plate, out exiting the plate

= htot/ hp p thin plate

standing of each of the above separate mechanisms as weltourse, since the two cavity cascades travel in opposite di-

as their mutual interaction. rections the step changes do not occur concurrently, but with
The transient heat transfer through an infinite flat plate a delay period.

has been studied extensively in the past. Carlsaw and Jeager

[4], Schneider [5] and Ozisik [6] provide extensive reviews

on these studies. The reported cases, however, are limite®, Definition and analysis of the problem

to step changes on one side only and of course there is no

mention of any “phase difference”. The extension to the A infinite flat plate of thickness separating two fluids
travelling source has also been studied, by assuming thatig considered (Fig. 1a) as the idealization of the separating
the source travels above only one of the two sides of the plate in the counter moving cavity cascade concept (Fig. 1b)
plate and for various boundary conditions [4,7]. Georgiou of the Isochoric Counter-Current Heat Exchanger [1]. At a
and Siakavellas [8] have studied the case of step changes ijivenx station of the plate, the passing of a cavity separating
the two free stream temperatures and the corresponding timeib modifies the local free stream conditions and the corre-
delay effects. sponding heat transfer coefficients. The two fluids are at dif-
The present study investigates the simplified limiting case ferent temperatures. Actually it &, > Two1, SO that heat is
of the transient, one-dimensional conduction through an infi- transferred from fluid 2 to fluid 1 through the plate. The plate
nite flat plate when the gasses in contact with each of its two material properties, i.e., the mass density, the specific
sides are exhibiting a step change in their heat transfer co-heat ¢), the thermal conductivityk) and thermal diffusivity
efficients. These changes correspond to the effect created byo = k/pc) are considered uniform throughout the plate, in-
a rib passing over a given point of the lid plate. If the width dependent of temperature and constant with time. Initially
of the rib is small, this change takes the form of a step. Of (+ < 0) the plate is considered to be in equilibrium with
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T, . o o
SIOE 2 ’ The initial temperature distributionp(y), is given by

T Eq. (A.8) in Appendix A.
y It is assumed that the first step change appears=a+
l T_’ and the second at=t; . Whenh1 changes firsty; = 1 for
pm—— " X t <0andy; > 1f0rt>0,whiley_2=1fort<td andy, >
w1 1 for ¢t > t;. Whenhy changes firsty; = 1 for ¢+ < t; and
(a) y1 > 1fort > ty, whileyp, =1 forr <0andy, > 1forr >
0. Of course, if the two step changes appear simultaneously
O HOTAIR Teos (ta =0), theny; = y» = 1 for r < 0 and bothyy, y» > 1 for
[ I SFPARATING LID | r> o .
+ The local temperature perturbatior;(y,) — To(y)
COOL AIR Tex may be transformed into the non-dimensional temperature
0(Y, 1):
(b) _
SIDE 2 0, 7)= w 4)
Too2 — Too1
which together with the non-dimensional parameters of dis-
B tance ¢) and time )
y ot
N wmar | V=TT ©)
modify Egs. (1)—(3) into the following non-dimensional
form (Appendix A):

=z

3%0 90
—=—, 0<¥Y<l1 (6)
SIDE 1 9Y2 ot
X 0 i Bof + (1 — 1) —22
Fig. 1. Sch ic di f the pl dthe h h ()Th'f'aY_y101 " 1+ Bo
ig. 1. Schematic diagram of the plate and the heat exchanger. (a) The infi- _ _ _
nite flat plate and the surrounding fluids; (b) the isochoric, counter-current =7r1Bof +(nn—Dpo, ¥Y=0 (7a)
heat exchanger concept; (c) the relative positions of the points on the sepa- 3¢9 Bo
ti Il — = —y2B020 + -1
rating wal oY Y2502 (2 ) 1+ B,
=—y2Bof +(y2—1Dpo, Y=1 (7b)

its environment, i.e., steady state temperature and heat flux
has been established. At- 0, the convective heat transfer 6(Y,7)=0, =0 (8)
coefficients, initially/1 = ho1 and 2 = hop, undergo step  The initial Biot numbersBo1, Boz and Bo involved in
changes with a delay periag among them, leading to new  Egs. (7a) and (7b) are defined as

valueshi = y1ho1 andha = yoho2, respectively. The nature I n " I

of this time delay is illustrated in Fig. 1c. The poiatwill Bop= 2% — 0_1w, Bop= 2% — 102w

sense the passing of the rib separating the cavities in the hot hp k hp k

gas cascade first and the rib on the opposite cascade will foI-B _ho _ how

— 9)

low. In the case of the poinf the sequence of the events 0= hp k
will be inverted. In the center poir the passing of the two whereh, = k/w is the internal conductance per unit length

ribs will be felt simultaneously. of the plate, whilehg is the initial “combined convective”
The heat transfer inside the finite thickness plate obeys heat transfer coefficient. Actuallyg is a part of the initial

Fick's equation “overall heat transfer coefficienth o), given as:

3°T aT
5 =pC— 1) 1 - s + 1
dy ot ho  ho1  ho2
where the directiory is normal to the two surfaces of the 1 1 1 1 1 1

=~ 4+ —+= 10
h,  hoi  hoa  h, (10)

Consequently, the effective Biot numhgg and the ratigsy,

plate andy = O corresponds to the surface exposed to the j . - ho
fluid 1 (Fig. 1a). The boundary and the initial conditions are:

oT involved in Egs. (7a), (7b), are:
k— =y1hoy(T — Txe1), y=0 (2a) gs. (7a), (7b)

o Bo1Bo2 ho
ka =php(Te2—T), y=w (2b) Boi+ Bo2  hp

fo = Bo — ho _ hotot
T(y,0)=To(y), t=0 3) °=1+Bo hoth, h,

(11)
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The final steady state temperaturé;(Y) = 6(Y, Gm = —hp (Tooz — Tool):_kM (19)
7 — 00) is the solution of w
20 20 By taking into consideration Eqgs. (A.6) and (A.9) (see Ap-
b = 2r =0,(1)—0,(0) (12) pendix A),¢(Y, 7) is written as:
W= Ol | (v.1) (Y, 1)

b 9 .C

Replacing for the boundary conditions (Egs. (7a), (7b)), ¢(Y,7) = SR 37 + o (20)
Eq. (12) yields m

The non-dimensional form of the surface heat fluxes into
0,(Y) = (B — Po) [Y L - (- DB2 } (13) the plate (aty = w), gin(¢) = g(w, 1), and out of the plate
' (r2—-1DB1+(n—1B2 (aty = 0), gout(t) = ¢ (0, 1), is obtained from Eq. (20), for
The Biot numbers, i.e By = y1Bo1, B» = 12Bo», B andthe Y =1andY =0as:

ratio 8 are defined similarly tdo1, Bo2, Bo andjg by gin(t)  36(Y, 1)
gin() =9l 1) = = + Bo

Bi— h1 _ hiw B, — ho _ how dm Y y=1

Tk TP,k =y2[Bo— Bo2f(1,7)] (21)

B1B> h hw
= = T t Y, t
Bit By hy  k pou(0) = p(0, 1) = LD _ LD

g = B _ h _ htot (14) qm aY Y=0

T 1+B h+h, h, = y1[Bo+ Bo16(0, 7)] (22)
The combined convectivé:) and overalliit) heat transfer ~ where Egs. (7b) and (7a) have been usedfynY aty =1
coefficients are given by andY = 0, respectively. If we take into consideration that for
1 1 1 7 =0we haved9/9Y = 0 (Egs. (7a), (7b) and (8)), while for
=4 = T — oo we haveddr/dY = B — Bo (Eq. (17)), the initial {o)
hl hll hzl L 1 1 and final () steady state heat fluxes become:
o B, m T h, 19 40 = gin(0) = pour(©) = fo
As it will be clear below (Eq. (23))o and 8 are the non- ¥ = ¢in(00) = gout(00) = p (23)

dimensional initial and final steady state heat fluxes for the \where g, and g are given by Egs. (11) and (14), respec-
thick plate, respectively, whil®y and B the corresponding tively. In the thin plate limit (Section 3), we hay < 1

ones for the thin plate limit. and B < 1 sinceh, > h. Hence,po = fo ~ Bo andgy =
In general, there exists a poiit = Yo where the fi- B~ B.
nal temperature perturbation is zerad (Yo) = 6 (Yo) — The temperature perturbatio@)(leads to an energy ac-
fo(Yo) = 07(Yo) = 0. This is obtained from Eq. (13) when  cumulation inside the plate. The instantaneous energy ac-
0r(Yo) =0, l.e., cumulation rate per unit are@] is equal to the difference
n—rv2+@(1—1B2 between.the sgrface heat qu>.<e§, i@(1) = gin(t) — qout(t)'_
0= 2—DBit (G1—1B (16) In non-dimensional terms this is transformed, according to
vz 1T 2 Egs. (21) and (22), into
Eqg. (13) is now written in terms dfp as: o)
P(1) = — =¢in(r) — T
9f(Y) — (B — Bo) (Y — Yo) (17) (r) am ¢in(T) — Yout(T)
The conditions for which the poirt lies within the plate = (r2= 1) o~ 2B (1, 1) — y1B010 (0, 1) (24)
(i.e., 0< Yo < 1) depend upon the modified Biot numbers, If the plate is divided into elementary slabs, of thickness
i.e., ony; andy,. The two extreme casegy =0 orYp =1, dy, volumedV = Ady and massim = pAdy (A is the ex-
occur when: posed surface area), the elementary amount of energy that
¥o+ B has been accumulated inside the slab at positioner the
"n=91Y3, Y0=0 period(0, 1) is
yo = %Ifl (Yo=1) (18)  dE(.0=dmcAT(y,)=pAc[T(y,0) = To(»)]dy (25)
1

The total amount of energy that has been accumulated inside
the plate over the period, t) and within a volumé&/ = Aw
with massn = pAw, is obtained by integrating Eq. (25):

The positionYy separates the plate into two regions with
higher/lower thermal stresses at the-> oo limit, as com-
pared to the initial thermal stress distribution.

The heat fluxg(y, 1) = —kdT (y,t)/dy, is transformed Y
into the non-dimensional heat flux(Y, t) = ¢(y,1)/qm, E(t):/dm cAT = pAc / [T(.0)—To(y)]dy (26)
where v V=0

=w
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In non-dimensional terms, this parameter is transformed into  The recovery time is defined as the time taken afterO

£(t), where to reach the final steady state temperature, 4,87) = 6r
y1 ordf,/dr = 0. The time differentiation of Eq. (33) gives:
E(t) /
=— "7 = [ 6, 1)dY 27 de _ -
EO) = Tz — TooD) o) @D~ [Botya — 1) — 6, () By + By e BB
Y=0
. . . . . =0 (35)
In the limit t — oo and in conjunction with Eq. (17),
Eq. (27) yields Strictly speaking, this is accomplished only in the limit

T — 00, since the plate temperature tends asymptotically to
1 its final steady state value. However, for practical purposes,
Ef=E(00) = / Or(¥)dY = (B — ﬁO)(é - YO) (28) it may be assumed that thermal equilibrium is established

Y=1

Y=0 when the time derivative of the plate temperature is smaller
By comparing Egs. (28) and (17) we observe that than or at least equal to a small critical vakue
Er=07(05) (29) ‘d@; ©) < (%) =¢ (36)

T T i
Consequently, ifrp = 0.5, the final energy accumulation is ~o/mn _ _
zero:&; =0. The recovery timeR,,, is defined as the elapsed period after
’ which the condition (36) is continuously satisfied. Egs. (35)
and (36) give:

3. Thethin platelimit R

Whenh, > h, the temperature gradients within the plate
may be neglected. In such a case the plate is labelled as “ther- x In
mally thin” and the instantaneous plate temperature is almost
uniform, i.e.,T (y, t) & T,(¢). The instantaneous energy bal- Itis possible to havet, /dt = 0, if the expressiono(y2 —
ance over a given control volume of unity area and thickness y1) — 0, (t4)(B1 + B2)] in Eq. (35) is equal to zero. This

Bo(y2 — y1) — 0p(ta)(B1+ B2)
&

(37)

w yields the governing equation for the thin plate limit: unique delay periodt(;) that forces a steady state condition
JT is given, ifh; changes first, by
P
pcw—==qin(?) = qout(?) 1 1 Bi+B
dt = In [ e Lt 52 } (38a)
= y2h02(Toc2 — Tp) — y1ho1(Tp — Too1) (30) ¢ Bi+Boz L|yi(y2—1) Boi+ Bo2
The non-dimensional form of Eq. (30) in terms of the per- or (if 12 changes first) by
turbation @,,) becomes (see Appendix A): . 1 [ v2—1 Bi+ B2 } (38b)
do ¢ Bopr+ B —1) Bo1+ B
b 4 (y1Bos + 72B0) 0 (1) = (2 — 1) Bo (31) oot Bz Ly20n=D Bort Bz ]
dt The estimation of the heat transfer coefficiertis,and
with initial condition Op(T) = 0 att = 0. The solution of ho, was based on the expressibr= PrCpl- <, where
Eqg. (31) is: ps is the mass density of the fluids 1 or 2 (cold or hot
_ gas, respectively), with an expected range from= 1.2
(i) ForO<t <14 to 12 kg/m? in the application considered (i.e., the ICHE).
o if iy changes first, i.eh1 = y1ho1, h2 = hoz The corresponding heat capacities are betwees 1000

Bo (Bt Bop)t and 1200 J(kg-K), while the Stanton number varies from
Op(r) = m(l —y)[l—e TR2T] (32a) g —0.002 to 0.006 (when the surface of the separating plate
is made sulfficiently “rough”). The cavity cascades of the iso-
choric heat exchanger move with a velocity going fror
20to 50 nys. The combination of the above data yield a min-
imum value for the heat transfer coefficients 48 Wi2-K)

and a maximum one 4320 ¥Mm?-K). Since the thickness

of the separating plate is expected to vary fram= 1 to

e if hp changes first, i.eh1 = ho1, h2 = y2ho2
Bog _
0,(1) = m(n —D[1— e BortBIT](32p)

(i) For t > 14 (h1 = y1ho1, ho = y2ho2):

Op(1) =0 + [0p(1a) — O |e” PrHBIT—T0) (33) 5 mm, the expected minimum and maximum Biot numbers
whereg, (z,) is the temperature perturbationat 7 , are 0.004 and 1.7, respectively, provided that the plate mate-
given bI;/ either Eq. (32a) or (32b), amg is the final rial is chrome—nickel steel. The maximum Biot number may

be extended up to 3, if a titanium alloy (Ti-6Al-4V) is used

instead of chrome—nickel. The Biot numbers considered in

p=— 27" B (34) the calculations are of the order of 0.1 for the thin plate ap-
Y1Bo1+ y2Bo2 proximation, and 1.0 in the thick plate analysis (Section 4).

steady-state value, given by
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1'8_ = . . . .
164 10 LTS periodic appearance of these steps, the deviations not only

14 will affect the heat resistance but they will introduce sig-

] S nificant thermal stresses in the plate material as well. As
predicted by Egs. (38a), (38b) for the above selected para-
meter values, for, ~ 5 (actuallyr; = 4.92) and as soon
as the second step appears, the thin plate temperature re-
mains constant (Fig. 2a), sindé, /dt =0 for r > 7,. This
is corroborated by the recovery timg,, (Fig. 2b), which
exhibits a singular performance near that point, as predicted
by Eq. (37). The influence of the delay period to the recovery
time is understood better if we study the time elapsed from
the second step change to the thermal equilibrium, i.e., the
time difference, &, — t4), as a function ot; (dashed line).

We observe thatk, — t;) away from the singular point in-
creases very slowly withy.

1,2
1,0
0,8
0.6
0,4
0,2
0,0
0,24
.0_4_-
06
_o_g_.

0,(1)/6,

504 4. Thethermally thick plate
404 In the case of the thermally thick plate one needs to solve
a non-homogeneous problem (Egs. (6)—(8)), with boundary
conditions of the third kind as discussed by Ozisik [6]. De-

tails of the solution process are given in Appendix B. The

analytic solutiord (Y, ), is:

304

20

Recovery time

101 (@) Over the time interval & t < 74:

y1Bo1

m

0(Y.T)=2p0 Y f(sm)<cossmY + SinémY>
m=1

T x (1—e77) (39)

(b) The eigenvalues,, are the positive roots of one of the
following transcendental equations:

Fig. 2. The influence of the delay period;{ on: (a) the evolution of the £(B1+ Boo)

temperature perturbation, (b) the recovery time for the thin plate. tan¢ = = a (40a)
§°— B1Bo2

Hence, in the thin plate limit, the following values are or
consideredBo; = 0.05, Bo = 0.08, y1 = 1.2 andy, = 1.5 tang = 5 BoLt B2) (40b)
(which meansB1 = 0.06 andB, = 0.12). The asymmetry of £2 — Bo1B2
the above values is due to the different densities in the two depending on whethér; (Eq. (40a)) ork, (Eq. (40b))
sides. The side 1 gas has undergone an isentropic expansion  changes first. For the latter case, in Eq. (39) it is set

before entering the corresponding side cavities in the iso- y1 = 1. The functionsf (&,,) are given in Appendix B.
choric heat exchanger. (b) Fort > 14

The influence of the delay period on the evolution of ~
the ratio6,/6F is illustrated in Fig. 2a. The negativey 0(Y.7) =2/302C(/\n)

values are employed in the figure to indicate that the step
change appears initially in thg coefficient. When the step B
change appears initially in thie; one, positive values are X (cosA”Y + 22 sini, Y>e*5<ffd)
assigned ta,. In the actual calculations; is always pos- An

n=1

itive. Fort — oo the ratiod,, /6 tends towards unity (Fig. s 2,

2a). When, however, the second step appears the perturba- X Z S Em)D (o, gm)(l_ e o)

tion is quite significant. The data show clearly that, during m=1

the transition period, the perturbation deviates significantly > By .

from the steady state values. The perturbation actually may + 2*‘3028(%)<C°SMY T An SinAy Y)

either overshoot temporarily the final steady state value or n=1

undershoot the initial (zero) value by a wide margin. In a x[1- e‘Af("’d)] (41)
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The eigenvalues,, are the positive roots of the transcen- 0,04 -

dental equation 0034

AMB B 0,02—-

tan)\’ — w (42) /l_? J

Ac— B1B> S 0014

while the functionsf (&,,), g(A,), C(A,) andD (A, &) >‘L 000

are given in Appendix B. If the step changesitpand ~ T

. . D -0,014

ho appear simultaneously, thep = 0 and the solution ]

becomes: 002

o0 B -0,03 4

1. ]

o(Y, 1) =2ﬂ02g(kn)(cosAnY+ A—smk,,Y) 004
n=1 n

2 -1

x (1—e ™) (43)

The non-dimensional heat flyxY, t) is given by Eq. (20).
The series converge rapidly for the Biot numbers employed ]
in the applications. In general, less than fifty terms are suf- 0,05
ficient for the convergence. The present study employed 0,044
eighty terms, the computation time being very short. 003 ]

Figs. 3, 4 illustrate the transient evolution of the thick
plate temperature perturbation and the influence of the de-
lay period on it. The initial Biot numbers are taken equal to
Bo1=0.5andBgp2 = 1.0, i.e.,Bo2 = 2Bp1. These are typical
values for the expected heat exchanger application. In Fig. 3, 0014
y1=1.2, y» = 1.5. For this combinatioiyp = 0, i.e., the ini-
tial and final steady state temperature perturbations are zero ]
at the bottom side of the plate. The evolution of the pertur- -0,034
bation is given for thre&’ positions, i.e..,Y = 0.0,0.5 and -
1.0. The deviation of the instantaneous perturbation value
from the steady state values is comparable to the thin plate
results for allY positions. Both over and undershooting are .
observed, depending on the time delay period and the Biot 0,074
numbers. The magnitude of these deviations is comparable 0,064
to the steady state perturbation values. The phenomenon of
sudden adjustment to a steady state similar to the predictions
of Egs. (38a), (38b) for the thin plate limit is observed here
as well (forty; = 0.35).

The combined influence of the time delay; Y and the
Biot number step change are illustrated in Fig. 4. The com- 001
bined effect of they's is presented through th& magni- 0,00}
tude. The following three combinations have been employed
in this figure:

0.5,1)

0(y=

0,05

0,04
0,03

0,02

0(Y=10,1)

-0,01

-0,02

() y1=1.2 andy, =15 (i.e., Yo = 0.0); 4 o0 4 2 3 4
(i) y1=1.2 andy, =125 (i.e.,Yo = 0.5); T
(i) y1 =212 andy, =1.125 (i.e.,.Yo = 1.0). ©)

The time-wise evolution of the temperature perturbation is Fig. 3. The evolution of the temperature perturbation at the exposed surfaces
tracked in three¥ positions ¢ = 0.0, 0.5 and 1.0), while and the middle of the plate for a thermally thick plate, whgnr= 0.0.

only two delay periods are considered (@)= +1.0, i.e.,

the step appears initially in the upper surface (solid line) and

(b) s = —1.0, i.e., the first step occurs in the bottom sur- spectable percentage. This implies that a thermal stress will
face (dashed line). The data indicate that the perturbationalways be present inside the plate material and for the whole
evolution is similar in all plate positions for a givekio{ ;) duration of the transient part of the process. For a given set
combination. The magnitudes, however, may differ by a re- of (y1, 7;) and wheny, increases the poiriftp moves from
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Fig. 4. The influence of the delay period;§ and the Biot number step
change on the temperature evolution.

value increases withy, if hy changes first, and decreases
with y» if k1 changes first. To clarify these, let us apply the
case (ii) 1 = 1.2, y» = 1.25), to a typical isochoric heat ex-
changer configuration. Sincgy; = 0.5 and Bg2 = 1.0, we
have B; = 0.6 and B, = 1.25. For the data given in Sec-
tion 3, this configuration could correspond to a titanium al-
loy plate, with a thickness ab = 2 mm and a cavity velocity

of u = 45 m/s. Then, the point for which the initial and final
steady state temperature perturbations are zero is situated at
yo = 1.0 mm (i.e.,Yp = 0.5 in dimensionless terms). Since

a typical distance between the cavities in the isochoric heat
exchanger is 1.5 m, the delay period between the two steps is
tg = 0.0167 s. For this configuration the specific value of the
parameter is zero. If we consider foy, a value slightly
higher, i.e.y» = 1.26, the calculations for this new combina-
tion (y1 = 1.2, y» = 1.26), show the following: The pointy
moves downwards, fromp = 1.0 mmtoyp = 0.94 mm (i.e.,

Yo = 0.47 instead of 0.5), while the specific value of the pa-
rameter; is now 0.0167 s, i.e., equal to the delay perigd
provided that:,> changes first.

The dimensionless heat flux perturbations on the two ex-
posed surfaces, i.egif(t) — o) and (out(t) — o), and the
non-dimensional instantaneous energy accumulation rate,
@ (1) = ¢in(t) — eout(t), are illustrated in Fig. 5, which
presents the heat flux evolution corresponding to Fig. 3 data.
According to Eqg. (23), the initial and final heat flux pertur-
bations are 0 anfl — Bo, respectively. Fig. 5 shows a sudden
change in all instantaneous heat flux parameters at the mo-
ment each step is applied, followed by an exponential decay
to the steady state values. If the delay period is relatively
short, the first step flux perturbation has not die out and this
leads to a significant shifting of the second step maxima. In
turn, this implies that in a periodic application of such steps
(as expected in the isochoric heat exchanger), the phenom-
ena could be exploited to modify the entire “steady state”
heat flux by a considerable percentage of the order of 10 to
20%. On the other hand, the phenomenon of sudden adjust-
ment to a steady state at the introduction of the second step
(corresponding to a&; = 0.35 for the present configuration)
may decrease sharply the “transient” period.

The accumulated energ§(t), during the transient pe-
riod is illustrated in Fig. 6a for the same conditions presented
in Figs. 3 and 5. It is quite apparent that the amount of
this energy may reach significant levels, up to 10% of the
steady state “accumulation” for the present configuration.
For differentYy values it may reach higher magnitudes. The
evolution of this parameter is very similar to the thin plate
temperature perturbation one (Fig. 2a), as well as to the thick
plate temperature perturbation whé&n= 0.5 (Fig. 3; see

the top towards the bottom of the plate and the temperatureEg. (29)). We verify again that if; takes the specific value

increases. Of course, the situation is inverted whein-

creases, for a given set of, 7;). On the other hand, for

a given set of(y1, y2), there exists a specific valug for

0.35, the stored energy reaches its final valyelmost im-
mediately after the second step. The combined influence of
the (Yo, 7y) parameters is exhibited in Fig. 6b, where the

the delay period that forces to a steady state condition asselected parameters are the same with those of Fig. 4. The

soon as the second step appearsyraonstant, this specific

influence is similar to that on the temperature perturbation.
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Fig. 6. (a) The influence of the delay period on the evolution of the accumu-
lated energy inside the plate wh&g = 0.0. (b) The combined influence of
Yp and the delay period on the accumulated energy.

if Yo > 1 we havelr < —(B — Bo)/2. These are evident
from Fig. 6b, where the curves for the time evolution of the
dimensionless energy stored for the three cases are shown in
the same diagram (witly = —1 andt; = 1). Itis clear that
&y decreases as the poirg moves from the bottom towards
the top of the plate.

As it has already been mentioned, each combination of
the Biot number step changes, andy», gives a different
Yo point (Eqg. (16)). If this lies within the plate, there exists
a specific valuer; for the delay period that drives the tem-

Fig. 5. The evolution of the heat flux perturbation on the exposed surfaces Perature, the inStamaneqUS_ energy accumulation rate and the
() ¢in(t) — 90, (b) pout(t) — o and (c) the instantaneous heat accumula- energy stored to take their final steady state values as soon as

tion, whenYg = 0.0.

According to Eq. (28), the energy that finally is stored
to the plate is positive ity < 0.5, negative ifYy > 0.5 and
zero if Yo = 0.5. So, for the cas&py = O it takes the value
Er = (B — Po)/2, while for Yo =1 we havef; = —(B —
Bo)/2. Of course, ifYg < 0, then&y > (B — Bo)/2, while

the second step is applied. This specific valuejis= 0.35
whenYy = 0 (Figs. 3, 5, 6a), while fokFg = 0.5 andYp =1

the corresponding values arg = 0.0 andz; = —0.45, re-
spectively. The influence of; on the above parameters is
understood better if we examine the dependence of the thick
plate recovery timeR(Y) on the delay periodR(Y) is de-
fined by a condition similar to Eq. (36), as the elapsed time
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after which the conditiomd6 (Y, t)/dt| < ¢ is continuously %07

satisfied.

Fig. 7 illustrates the influence of the delay period aid
on the recovery time (actually the differeng€Y) — ), for
¢ = 0.001. The finite thickness of the plate does not distort = ]
the thin plate results to any large extent, since the recov- ' ;|
ery time is nearly the same over the greater part of the plate +° ]
width. The presence of a singular point is quite apparent. & ;4|
This point corresponds to the specific values of the delay pe- ]
riod z; = 0.35, 00 and—-0.45 whenYp = 0.0, 0.5 and 10, 0,5
respectively, for which the temperature, the instantaneous :
energy accumulation rate and the energy stored reach their 0,0
final values almost right after the second step. The position
of this point is slightly replaced with respect to the corre-
sponding thin plate value, as it is evaluated analytically in
Egs. (38a), (38b). It is also observed that thermal equilib-
rium is established slightly faster at the plate borders (i.e., at
Y =0 andY = 1) than the interior points.

2,5
5. Conclusions
2,0
The transient conduction of heat through an infinite thin |
plate was studied when the two free streams surrounding it §  15-
undergo step changes in their heat transfer coefficients. The >
changes occur with a time delay. The results show that: > 101
[ |
(1) The Biot number step changes,andy», define a point 05-
Yo for which the difference in steady state temperatures )
(final-initial) is zero. This point separates thermally the 00+
plate into two regions and generates opposite thermal . i . , , i
stresses. -1,5 -1,0 0,5 0,0 05 1,0 15
(2) The additional amount of energy absorbed by the plate T
in order to create the temperature gradients may well
exceed the 10% of the accumulation required to estab- (b)
lish the new final steady state. The energy that finally is
stored to the platefy, is positive if Yo < 0.5, negative 3.0
if Yo > 0.5 and zero ifYo = 0.5. 1
(3) The rate of change of the temperature perturbation dur-
ing the period between the steps is far larger than the
one following the appearance of the second step. o
(4) The thermally thick plate leads to large temperature and T
heat flux perturbations near the time moment that the <>
second step appears. >
(5) The recovery time usually increases with the time de- & ]
lay. Under certain conditionsf = z), right after the 054
introduction of the second step the final steady state is ]
reached instantaneously. This corresponds to the shorter 0,04
recovery time for the entire phenomenon. The specific

2,5

2,0

value ) depends on the Biot number step changes, A5 0 05 00 05 10 15
andy», and, consequently, orp. T,
(©
Appendix A
The initial steady state temperature in thie plate limit, Fig. 7. The combined influence of the delay period &gan the recovery

T,(t) = To,, ats =0, is obtained from Eq. (30) if we take ~MmeWwhen (@}fo=0.0, (1)¥o=05and (¢)¥o =1.0.
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into consideration that, initiallyz(< 0) the plate is in equi-
librium with its environment. So, at = 0, we havey; =
y2=1,dTo ,/dt = 0and Eq. (30) yieldsto2(Too2 — To, p) —
ho1(To,p — Teo1) = 0. Then, Ty, is obtained as:

_ h01To01 + ho2Toc2  Bo1Too1 + Bo2Too2
ho1+ ho2 Bo1+ Boz2

The non-dimensional thin plate temperatéig(z), is de-
fined as:

To, P (A. 1)

T,(t) — To
0,(t) = L— 2L A2
P( ) TooZ - Tool ( )
From Eqg. (A.2) the following equations result:
Tp(t) = (Too2 — Too1)0p () + To,p (A.3)
dTp([) . dep(‘[)
T = (Too2 — Too1) dt
o do,(t
= (TOOZ - Tool)_z p( ) (A-4)
we drt

If we use now Egs. (A.1), (A.3), (A.4) and take into con-

sideration Egs. (9) and (11), we obtain the non-dimensional

form of Eqg. (30), i.e., Eq. (31).

From the definition of the non-dimensionthick plate
temperatured (Y, t), (Eq. (4)), the following equations re-
sult:

T(y,1) = (Too2 — Too1) (Y, ) + To(y) (A.5)

aT (y,t) — (Tauo— Toot) 0(Y, 1) n dTo(y)

dy dy dy
The initial conditionT (y, r) = To(y) att = 0, is obtained
from the solution of/2Ty/dy? = 0, which yieldsd To/dy =
const and gives the temperature distribution during the initial
steady state, i.e., for the periodl 0. In fact, if we consider
the boundary conditions (2a) and (2by at 0, we have:

o, Tow) —To©) _
dy w
= ho2[ Too2 — To(w)]

The solution of the system of Egs. (A.7) yields:

(A.6)

ho1[To(0) — Too1]

(A7)

_ Bo1Too1 + Bo2To02 + Bo1B0o2To01
Bo1+ Bo2 + Bo1Bo2
Bo y
Too2 — Too1) —
1+ BO( 002 ool)w
_ TO,p + BoToo1
- 1+ Bog
TheTy,, involved in Eq. (A.8) is the initial steady state tem-
perature in the thin plate limit, given by Eq. (A.1) while the
Bo1, Bo2, Bo, Bo are given by Egs. (9) and (11).
From Eq. (A.8) itis clear that:

dTo(y)  Po(Too2 — Too1)
dy w

To(y)

+

+ Bo(Too2 — Tool)% (A.8)

(A.9)
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To,p + BoToo1
TO(y)‘y:O =To(0) = q+—13()C>O (A.10)
To)|,_,, = To(w)
To,p + BoToo1
=—L 2 | B0 (T2 — Tool) (A.11)

1+ Bo

If we use now Egs. (A.5), (A.6), (A.9)—(A.11) and take
into consideration Eq. (5), we obtain from Egs. (1), (2a),
(2b) and (3), the non-dimensional form of the thick plate
equations, i.e., Egs. (6), (7a), (7b) and (8), respectively.

Appendix B

We have to solve the following equation

3%0 96
—=—, 0<¥Y<l1 (B.1)
Y2 ot
with boundary conditions
0 .
3y y1Bio1 = (y1 —DBo, Y =0 (B.2a)
0 .
oy T y2Bio20 = (y2—Dpo, Y =1 (B.2b)
The initial condition is
6(Y,7)=0, =0 (B.3)

if the equation is solved in the time intervakOr < t;, and

0, 0)=FY), t=14 (B.4)

if the equation is solved in the time intervab ;.

By separating the time and space variables, it is demon-
strated easily that the complete solution of the temperature
functioné(Y, 1) is given in the form

0V, 1) = ¥ (. V)00, T) (B.5)

n=1

wherec, are unknown coefficients to be determinec,,, v)
is the integral transform af(Y, t) with respect to the space
variableY in the range X Y < 1, defined as:

1

O(hy, T) = f WA, YHOY', 7)dY’ (B.6)
Y'=0
while ¥ (1,,, Y) has the form
B .
¥ (A, Y)=cos\r,Y + 1201 sinA,, Y (B.7)

n

In fact, ¥ (A,,, Y) is the eigenfunction of the following aux-
iliary eigenvalue problem

A2y (Y)

2 —
772 +A°¥(Y)=0, O<Y<l1 (B.8)
204
d;’ ) — 1B (Y)=0, Y=0 (B.93a)
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dv(Y) + 2B (Y)=0, Y=1 (B.9b) where the eigenvalues, are the positive roots of the tran-
dy scendental equation (42) agdr,,) are given as:
By applying now the transform (B.6) we take the integral
transform of Eq. (B.1) o) = (v2 = D(cosh, + 72 sini,) — (y1 — 1) (B.18)
8 = .
! Bi+(1+ A2+Bz)(/\2 +B?)
29(Y, 1) 000, 7) |
¥ n, ¥) 9Y2 dY = [ ¥ (. Y) 97 In the general case, the solution depends on the time in-
0 0 terval considered:
dd (A, T)
= (B.10) (@) In the time interval [0< 7 < 7], the initial condition
The term in the first member in Eqg. (B.10) is evaluated by E gl\I/3e27by' E‘?- (B.3). So, the solution is similar to
making use of the Green’s theorem and written as a.(B.17). e
1 820(Y. 1) oY, 1) —2,302 F(En) <cos§mY+ v1Bo1 smgmy>
/l[/(kn,Y)WdY o &m
0 x (1—e5nr) (B.19)
— 129 _ —_
=200, ) = (y1 = Do (A, Y)|Y=0 The eigenvalueg,, are the positive roots of the tran-
+ (v2— DBo¥ M. V) |y (B.11) scendental equation (40ayif changes first, or (40b) if
By substituting Eq. (B.11) into Eq. (B.10), the latter it is hz changes first. Fo_r the latter case, m_Eq. (B.19) itis
finally written as: sety1 = 1. The functionsf (§,,) are given in the former
B case by
do(hp,T) . o=
— L 4 A0, T) = Ak B.12 -1
dt + " ( 'L') ( ) ( ) f(Sm) = - y]é (Bzoa)
. Bi+ (14 %) (52 + B)
where we have put for brevity £24B§,
AGw) = Po[ (2= D¥ (s ) — (1 = DY (0, 0)]  (B.13) andin the latter by
The initial condition for Eq. (B.12) is obtained by taking the . (y2 — 1)(cosy, + 2 singy) (B.20b)
integral transform of the initial condition of Eq. (B.1). Let us " B 1 2. p '
. Ol+( +§2+Bz)(§ + 01)
apply the transform (B.6) to the condition (B.4):
1 (b) In the time interval { > 4], the initial condition is
, R given by Eq. (B.4), wheré"(Y) = 0(Y, 74) is obtained
9()‘"’”|r =ty / Wk, YOF(Y)dY = F(4,) (B.14) from Eq. (B.19) fort = t;. The (A, t), involved in
Y'=0 the general form of the solution (i.e., Eg. (B.5)), is given
The solution of Eq. (B.12) subjected to the transformed ini- by Eq. (B.15), whileF (1,) is obtained from Eq. (B.14)
tial condition (814) is: for F(Y) = Q(Y, 'L'd). The solution is
] _F —32(t—14) >
(kn,r)—F(/\A()f) 0(Y. 1) =260  C(hn)
—12(1—1,
+ AZ” [1-e ()] (B.15) n=1

(cosk,,YJr)L—smA Y) e (T=T)

n

In case where the initial condition (B.3) is used, then
F(%,) =0 and if we putr; = 0 into Eq. (B.15) we obtain o0 )
x Z FEm)D O &) (1— €75070)

= A(hy) )2
Ohp, 7) = 2 (1—e™7) (B.16)
! By
The simplest case is when the two-step changek;to +2,3()Zg(k )<cosA Y + —S|nA,1Y>
andhy appear simultaneously. Thep = 0 and, if we intro- n=1
duce (B.16) and (B.7) into the general form of the solution, % (1 _e M (r—rd)) (B.21)
i.e., Eq. (B.5) and determine the coefficiemfsby taking _ - '
into consideration the orthogonality of the eigenfunctions The eigenvalues, are the positive roots of the transcen-
W (), Y), we obtain the following solution: dental equation (42)f (§,) is given by Egs. (B.20a),
~ (B.20b),g(A,) is given by Eq. (B.18) and'(1,) is given
B .
(Y, t)=2ﬂ02g(kn)<COSAnY+ fsinxﬂ) as: ,
n— n )\'
! COw) = (B.22)

x (L—e ) (B.17) Bt (L4 55%52) O + BY)
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The D(),, &,) depends on whethér; or hy changes
first and is given respectively by

B? )sin(xn — )

D()\nagm) = (1+

)Ln‘i:m )\n - %-m
2 .
n <1 By > SiN(Ay + &m)
Bl Bl 2)\n Cngn - Sm)
+<E+s_m>[k,%—sn% Tt
_ coshn +8n) 5’")} (B.23a)
)\n + EH‘L
Dy, &) = (1+ B;°1fl> S”l()‘"__;’")
N <1 3 30131) sin(hy, + &m)
%_m)\n )\n + ‘i:m
Boi B 2k coS A, —&m)
+<E_m+z>|:)‘5_§r%_ )\n_sm
_ cogA, + sm)} (B.23b)
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